Identitäten bei den Stirling-Zahlen 2.Art aus kombinatorischen Überlegungen beim Würfelspiel.
Random allocations of balls into boxes are considered. Properties of the number of boxes containing a fixed number of balls are studied. A moment inequality is obtained. A merge theorem with Poissonian accompanying laws is proved. It implies an almost sure limit theorem with a mixture of Poissonian laws as limiting distribution. Almost sure versions of the central limit theorem are obtained when the parameters are in the central domain.
We study the thresholds for the emergence of various properties in random subgraphs of (ℕ, <). In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.