Page 1

Displaying 1 – 11 of 11

Showing per page

Poisson convergence of numbers of vertices of a given degree in random graphs

Wojciech Kordecki (1996)

Discussiones Mathematicae Graph Theory

The asymptotic distributions of the number of vertices of a given degree in random graphs, where the probabilities of edges may not be the same, are given. Using the method of Poisson convergence, distributions in a general and particular cases (complete, almost regular and bipartite graphs) are obtained.

Preservation of log-concavity on summation

Oliver Johnson, Christina Goldschmidt (2006)

ESAIM: Probability and Statistics

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of...

Probability that an element of a finite group has a square root

M. S. Lucido, M. R. Pournaki (2008)

Colloquium Mathematicae

Let G be a finite group of even order. We give some bounds for the probability p(G) that a randomly chosen element in G has a square root. In particular, we prove that p(G) ≤ 1 - ⌊√|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 - 1/√|G|. Both of these bounds are best possible upper bounds for p(G), depending only on the order of G.

Pseudoquestionnaires

D. Chenais, M. Terrenoire (1971)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Currently displaying 1 – 11 of 11

Page 1