O jistém problému z počtu pravděpodobnosti
We consider the hard-core lattice gas model on and investigate its phase structure in high dimensions. We prove that when the intensity parameter exceeds , the model exhibits multiple hard-core measures, thus improving the previous bound of given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of edge cutsets in , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model. We provide a refined combinatorial...
A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of n points in a one-dimensional space.
The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices ( points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by...
We formulate the notion of Q-independence which generalizes the classical independence of random variables and free independence introduced by Voiculescu. Here Q stands for a family of polynomials indexed by tiny partitions of finite sets. The analogs of the central limit theorem and Poisson limit theorem are proved. Moreover, it is shown that in some special cases this kind of independence leads to the q-probability theory of Bożejko and Speicher.