Page 1

Displaying 1 – 9 of 9

Showing per page

N-dimensional measures of dependence.

Edward F. Wolff (1980)

Stochastica

In recent joint papers with B. Schweizer, we used the notion of a copula to introduce a family of symmetric, nonparametric measures of dependence of two random variables. Here, we present n-dimensional extensions of these measures and of Spearman's ro. We study them vis-a-vis appropriate higher dimensional analogues of Rényi's axioms for measures of dependence, determine relations among them, and in some cases establish reduction formulae for their computation.

No return to convexity

Jakub Onufry Wojtaszczyk (2010)

Studia Mathematica

We study the closures of classes of log-concave measures under taking weak limits, linear transformations and tensor products. We investigate which uniform measures on convex bodies can be obtained starting from some class 𝒦. In particular we prove that if one starts from one-dimensional log-concave measures, one obtains no non-trivial uniform mesures on convex bodies.

Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities.

Paolo Baldi, Enrico Casadio Tarabusi, Alessandro Figà-Talamanca, Marc Yor (2001)

Revista Matemática Iberoamericana

We study the law of functionals whose prototype is ∫0+∞ eBs(ν) dWs(μ),where B(ν) and W(μ) are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of in variant diffusions on the hyperbolic half-plane. Emphasis is put on the fact that the results are obtained in two independent, very different fashions (invariant diffusions on the hyperbolic half-plane and Bessel processes).

Currently displaying 1 – 9 of 9

Page 1