Convergence of stochastic processes [Abstract of thesis]
Petr Lachout (1989)
Commentationes Mathematicae Universitatis Carolinae
C. Swartz, D. Meyers (1972)
Studia Mathematica
Claude Dellacherie (1977)
Séminaire de probabilités de Strasbourg
Burroni, Elisabeth (2009)
Theory and Applications of Categories [electronic only]
S. Mitrović (1984)
Matematički Vesnik
Michel Émery (2000/2001)
Séminaire Bourbaki
M. B. Lacaze (1973)
Annales de l'I.H.P. Probabilités et statistiques
Z. Ivković, J. Vukmirović (1976)
Matematički Vesnik
J.J. Hoehnke (1974)
Semigroup forum
J. Duchon (1976)
Annales scientifiques de l'Université de Clermont. Mathématiques
Paul-André Meyer, Kia-An Yen (1975)
Séminaire de probabilités de Strasbourg
Paul-André Meyer (1976)
Séminaire de probabilités de Strasbourg
T.J. Rabeherimanana (2002)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Vilmos Prokaj, Miklós Rásonyi, Walter Schachermayer (2011)
Annales de l'I.H.P. Probabilités et statistiques
The following question is due to Marc Yor: Let B be a brownian motion and St=t+Bt. Can we define an -predictable process H such that the resulting stochastic integral (H⋅S) is a brownian motion (without drift) in its own filtration, i.e. an -brownian motion? In this paper we show that by dropping the requirement of -predictability of H we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor’s question. The original question, i.e.,...
Jean-Pierre Conze (1972/1973)
Séminaire Bourbaki
Peter Jaeger (2016)
Formalized Mathematics
First we give an implementation in Mizar [2] basic important definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224). Second we give some concrete formalization and verification to real world examples. In article [8] we started to define random variables for a similar presentation to the book [6]. Here we continue this study. Next we define the stochastic process. For further definitions...
Khadiga Arwini, Christopher Dodson (2007)
Open Mathematics
We provide explicit information geometric tubular neighbourhoods containing all bivariate distributions sufficiently close to the cases of independent Poisson or Gaussian processes. This is achieved via affine immersions of the 4-manifold of Freund bivariate distributions and of the 5-manifold of bivariate Gaussians. We provide also the α-geometry for both manifolds. The Central Limit Theorem makes our neighbourhoods of independence limiting cases for a wide range of bivariate distributions; the...
Pineda, Ebner, Urbina R., Wilfredo (2008)
Divulgaciones Matemáticas
Ljiljana Petrović (1983)
Publications de l'Institut Mathématique
J. Bulatović (1976)
Publications de l'Institut Mathématique