Odchylky od normálního zákona chyb
The measurement of continuous quantities is the basis for all mathematical and statistical analysis of phenomena in engineering and science.Therefore a suitable mathematical description of measurement results is basic for realistic analysis methods for such data. Since the result of a measurement of a continuous quantity is not a precise real number but more or less non- precise, it is necessary to use an appropriate mathematical concept to describe measurements. This is possible by the description...
We consider positive real valued random data X with the decadic representation X = Σi=∞∞Di 10i and the first significant digit D = D(X) in {1,2,...,9} of X defined by the condition D = Di ≥ 1, Di+1 = Di+2 = ... = 0. The data X are said to satisfy the Newcomb-Benford law if P{D=d} = log10(d+1 / d) for all d in {1,2,...,9}. This law holds for example for the data with log10X uniformly distributed on an interval (m,n) where m and n are integers. We show that if log10X has a distribution function...