Displaying 21 – 40 of 42

Showing per page

On the curvature of the space of qubits

Attila Andai (2006)

Banach Center Publications

The Fisher informational metric is unique in some sense (it is the only Markovian monotone distance) in the classical case. A family of Riemannian metrics is called monotone if its members are decreasing under stochastic mappings. These are the metrics to play the role of Fisher metric in the quantum case. Monotone metrics can be labeled by special operator monotone functions, according to Petz's Classification Theorem. The aim of this paper is to present an idea how one can narrow the set of monotone...

On the Jensen-Shannon divergence and the variation distance for categorical probability distributions

Jukka Corander, Ulpu Remes, Timo Koski (2021)

Kybernetika

We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence...

On the Rao-Blackwell Theorem for fuzzy random variables

María Asunción Lubiano, María Angeles Gil, Miguel López-Díaz (1999)

Kybernetika

In a previous paper, conditions have been given to compute iterated expectations of fuzzy random variables, irrespectively of the order of integration. In another previous paper, a generalized real-valued measure to quantify the absolute variation of a fuzzy random variable with respect to its expected value have been introduced and analyzed. In the present paper we combine the conditions and generalized measure above to state an extension of the basic Rao–Blackwell Theorem. An application of this...

On unbiased Lehmann-estimators of a variance of an exponential distribution with quadratic loss function.

Jadwiga Kicinska-Slaby (1982)

Trabajos de Estadística e Investigación Operativa

Lehmann in [4] has generalised the notion of the unbiased estimator with respect to the assumed loss function. In [5] Singh considered admissible estimators of function λ-r of unknown parameter λ of gamma distribution with density f(x|λ, b) = λb-1 e-λx xb-1 / Γ(b), x>0, where b is a known parameter, for loss function L(λ-r, λ-r) = (λ-r - λ-r)2 / λ-2r.Goodman in [1] choosing three loss functions of different shape found unbiased Lehmann-estimators, of the variance σ2 of the normal distribution....

Optimal solutions of multivariate coupling problems

Ludger Rüschendorf (1995)

Applicationes Mathematicae

Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal l p -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest...

Optimality conditions for maximizers of the information divergence from an exponential family

František Matúš (2007)

Kybernetika

The information divergence of a probability measure P from an exponential family over a finite set is defined as infimum of the divergences of P from Q subject to Q . All directional derivatives of the divergence from are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for P to be a maximizer of the divergence from are presented, including new ones when P  is not projectable to .

Currently displaying 21 – 40 of 42