Page 1

Displaying 1 – 5 of 5

Showing per page

On the compound Poisson-gamma distribution

Christopher Withers, Saralees Nadarajah (2011)

Kybernetika

The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.

On two fragmentation schemes with algebraic splitting probability

M. Ghorbel, T. Huillet (2006)

Applicationes Mathematicae

Consider the following inhomogeneous fragmentation model: suppose an initial particle with mass x₀ ∈ (0,1) undergoes splitting into b > 1 fragments of random sizes with some size-dependent probability p(x₀). With probability 1-p(x₀), this particle is left unchanged forever. Iterate the splitting procedure on each sub-fragment if any, independently. Two cases are considered: the stable and unstable case with p ( x ) = x a and p ( x ) = 1 - x a respectively, for some a > 0. In the first (resp. second) case, since smaller...

Optimization of the size of nonsensitiveness regions

Eva Lešanská (2002)

Applications of Mathematics

The problem is to determine the optimum size of nonsensitiveness regions for the level of statistical tests. This is closely connected with the problem of the distribution of quadratic forms.

Currently displaying 1 – 5 of 5

Page 1