The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We construct new multivariate copulas on the basis of a generalized infinite partition-of-unity approach. This approach allows, in contrast to finite partition-of-unity copulas, for tail-dependence as well as for asymmetry. A possibility of fitting such copulas to real data from quantitative risk management is also pointed out.
We introduce new estimates and tests of independence in copula models with unknown margins using -divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of -divergence has good properties in terms of efficiency-robustness.
The paper deals with the estimation of the unknown vector parameter of the mean and the parameters of the variance in the general -stage linear model. Necessary and sufficient conditions for the existence of the uniformly minimum variance unbiased estimator (UMVUE) of the mean-parameter under the condition of normality are given. The commonly used least squares estimators are used to derive the expressions of UMVUE-s in a simple form.
We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.
Currently displaying 1 –
5 of
5