Rank conditions for estimability of covariances
This paper deals with the problem of estimating a covariance matrix from the data in two classes: (1) good data with the covariance matrix of interest and (2) contamination coming from a Gaussian distribution with a different covariance matrix. The ridge penalty is introduced to address the problem of high-dimensional challenges in estimating the covariance matrix from the two-class data model. A ridge estimator of the covariance matrix has a uniform expression and keeps positive-definite, whether...
Robust estimation presented in the following paper is based on Fisher consistent and Fréchet differentiable statistical functionals. The method has been used in the multivariate normal model with variance components [5]. To transfer the method to estimate vector of expectations and positive definite covariance matrix of the multivariate normal model it is required to express the covariance matrix as a linear combination of basic elements of the vector space of real, square and symmetric matrices....