Previous Page 9

Displaying 161 – 169 of 169

Showing per page

Asymptotic normality of multivariate linear rank statistics under general alternatives

James A. Koziol (1979)

Aplikace matematiky

Let X j , 1 j N , be independent random p -vectors with respective continuous cumulative distribution functions F j 1 j N . Define the p -vectors R j by setting R i j equal to the rank of X i j among X i j , ... , X i N , 1 i p , 1 j N . Let a ( N ) ( . ) denote a multivariate score function in R p , and put S = j = 1 N c j a ( N ) ( R j ) , the c j being arbitrary regression constants. In this paper the asymptotic distribution of S is investigated under various sets of conditions on the constants, the score functions, and the underlying distribution functions. In particular, asymptotic normality of S is established...

Asymptotic properties of the growth curve model with covariance components

Ivan Žežula (1997)

Applications of Mathematics

We consider a multivariate regression (growth curve) model of the form Y = X B Z + ε , E ε = 0 , var ( vec ε ) = W Σ , where W = i = 1 k θ i V i and θ i ’s are unknown scalar covariance components. In the case of replicated observations, we derive the explicit form of the locally best estimators of the covariance components under normality and asymptotic confidence ellipsoids for certain linear functions of the first order parameters { B i j } estimating simultaneously the first and the second order parameters.

Asymptotic study of canonical correlation analysis: from matrix and analytic approach to operator and tensor approach.

Jeanne Fine (2003)

SORT

Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,...

Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model

Wiktor Oktaba (1995)

Applications of Mathematics

By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant | σ 2 | in the MGM model ( U , X B , σ 2 V ) , > 0 , scalar σ 2 > 0 , with a matrix V 0 . A known n × p random matrix U has the expected value E ( U ) = X B , where the n × d matrix X is a known matrix of an experimental design, B is an unknown d × p matrix of parameters and σ 2 V is the covariance matrix of U , being the symbol of the Kronecker...

Currently displaying 161 – 169 of 169

Previous Page 9