Second-order approximation of the entropy in nonlinear least-squares estimation
An asymptotic formula for the difference of the -estimates of the regression coefficients of the non-linear model for all observations and for observations is presented under conditions covering the twice absolutely continuous -functions. Then the implications for the -estimation of the regression model are discussed.
The paper deals with the experimental design which is optimal in the following sense: it satisfies the cost requirements simultaneously with a satisfactory precision of estimates. The underlying regression model is quadratic. The estimates of unknown parameters of the model are explicitly derived.
Biology and medicine are not the only fields that present problems unsolvable through a linear models approach. One way to overcome this obstacle is to use nonlinear methods, even though these are not as thoroughly explored. Another possibility is to linearize and transform the originally nonlinear task to make it accessible to linear methods. In this aricle I investigate an easy and quick criterion to verify suitability of linearization of nonlinear problems via Taylor series expansion so that...