The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The longitudinal regression model where is the th measurement of the th subject at random time , is the regression function, is a predictable covariate process observed at time and is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth -estimator of unknown parameter .
In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among...
In this paper, we study the problem of non parametric estimation
of an unknown regression function from dependent data with
sub-Gaussian errors. As a particular case, we handle the
autoregressive framework. For this purpose, we consider a
collection of finite dimensional linear spaces (e.g. linear spaces
spanned by wavelets or piecewise polynomials on a possibly
irregular grid) and we estimate the regression function by a
least-squares estimator built on a data driven selected linear
space among...
We consider the problem of estimating an unknown regression function when the design is random with values in . Our estimation procedure is based on model selection and does not rely on any prior information on the target function. We start with a collection of linear functional spaces and build, on a data selected space among this collection, the least-squares estimator. We study the performance of an estimator which is obtained by modifying this least-squares estimator on a set of small probability....
We consider the problem of estimating an unknown regression function
when the design is random with values in . Our estimation
procedure is based on model selection and does not rely on any prior
information on the target function. We start with a collection of
linear functional spaces and build, on a data selected space among
this collection, the least-squares estimator. We study the
performance of an estimator which is obtained by modifying this
least-squares estimator on a set of small...
Currently displaying 1 –
6 of
6