Displaying 181 – 200 of 388

Showing per page

Minimum mean square error estimation

Gejza Wimmer (1979)

Aplikace matematiky

In many cases we can consider the regression parameters as realizations of a random variable. In these situations the minimum mean square error estimator seems to be useful and important. The explicit form of this estimator is given in the case that both the covariance matrices of the random parameters and those of the error vector are singular.

Modelización de datos longitudinales con estructuras de covarianza no estacionarias: modelos de coeficientes aleatorios frente a modelos alternativos.

Vicente Núñez-Antón, Dale L. Zimmerman (2001)

Qüestiió

Un tema que ha suscitado el interés de los investigadores en datos longitudinales durante las dos últimas décadas, ha sido el desarrollo y uso de modelos paramétricos explícitos para la estructura de covarianza de los datos. Sin embargo, el análisis de estructuras de covarianza no estacionarias en el contexto de datos longitudinales no se ha realizado de forma detallada principalmente debido a que las distintas aplicaciones no hacían necesario su uso. Muchos son los modelos propuestos recientemente,...

Multistage regression model

Lubomír Kubáček (1986)

Aplikace matematiky

Necessary and sufficient conditions are given under which the best linear unbiased estimator (BLUE) β ^ i ( Y 1 , , Y i ) is identical with the BLUE β ^ i ( β ^ 1 , , β ^ i - 1 , Y i ) ; Y 1 , Y i are subvectors of the random vector Y in a general regression model ( Y , X β , ) , ( β 1 ' , , β i ' ) ' = β a vector of unknown parameters; the design matrix X having a special so called multistage struture and the covariance matrix are given.

Multivariate models with constraints confidence regions

Lubomír Kubáček (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In multivariate linear statistical models with normally distributed observation matrix a structure of a covariance matrix plays an important role when confidence regions must be determined. In the paper it is assumed that the covariance matrix is a linear combination of known symmetric and positive semidefinite matrices and unknown parameters (variance components) which are unbiasedly estimable. Then insensitivity regions are found for them which enables us to decide whether plug-in approach can...

Multivariate statistical models; solvability of basic problems

Lubomír Kubáček (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Multivariate models frequently used in many branches of science have relatively large number of different structures. Sometimes the regularity condition which enable us to solve statistical problems are not satisfied and it is reasonable to recognize it in advance. In the paper the model without constraints on parameters is analyzed only, since the greatness of the class of such problems in general is out of the size of the paper.

Note on the estimation of parameters of the mean and the variance in n -stage linear models

Júlia Volaufová (1988)

Aplikace matematiky

The paper deals with the estimation of the unknown vector parameter of the mean and the parameters of the variance in the general n -stage linear model. Necessary and sufficient conditions for the existence of the uniformly minimum variance unbiased estimator (UMVUE) of the mean-parameter under the condition of normality are given. The commonly used least squares estimators are used to derive the expressions of UMVUE-s in a simple form.

Currently displaying 181 – 200 of 388