A review of generalized linear mixed models
We consider a chaotic system with a double-scroll attractor proposed by Elwakil, composing with a second-order system, which has low-dimensional multiple invariant subspaces and multi-level on-off intermittency. This type of composite system always includes a skew-product structure and some invariant subspaces, which are associated with different levels of laminar phase. In order for the level of laminar phase be adjustable, we adopt a nonlinear function with saturation characteristic to tune the...
Planteamos el modelo lineal sobre variables dummy difusas asociadas a variables cuantitativas codificadas o cualitativas. En el modelo bicriterio aparecen las mismas dificultades conceptuales que se presentan en el caso multicriterio, pero su desarrollo resulta mucho más ágil y transparente. Resolvemos las ecuaciones normales, caracterizando el conjunto de soluciones y encontramos finalmente las funciones paramétricas estimables para este modelo.
Continuando el desarrollo del modelo lineal sobre dos variables dummy difusas, encontramos expresiones para las descomposiciones clásicas en sumas de cuadrados y estudiamos sus distribuciones bajo hipótesis de normalidad. Damos una interpretación geométrica del ajuste cuando las variables numéricas explicativas se ven sometidas a una codificación difusa de tipo semilineal y contrastamos en estos casos la mejora de este nuevo modelo respecto de la regresión sobre las variables originales. Concluimos...
By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant in the MGM model , , scalar , with a matrix . A known random matrix has the expected value , where the matrix is a known matrix of an experimental design, is an unknown matrix of parameters and is the covariance matrix of being the symbol of the Kronecker...
Linear relations, containing measurement errors in input and output data, are taken into account in this paper. Parameters of these so-called errors-in-variables (EIV) models can be estimated by minimizing the total least squares (TLS) of the input-output disturbances. Such an estimate is highly non-linear. Moreover in some realistic situations, the errors cannot be considered as independent by nature. Weakly dependent (- and -mixing) disturbances, which are not necessarily stationary nor identically...