Aplicación de la suavización no paramétrica del tipo "K-puntos próximos" a modelos de regresión lineal.
En el modelo de regresión lineal y = E(Y/X = x) = θx, donde (X,Y) es un vector aleatorio bidimensional, del que se dispone de una muestra {(X1, Y1), ..., (Xn, Yn)}, se han introducido recientemente una clase general de estimadores para θ definida como aquellos valores que minimizan el funcional:ψ(θ) = ∫ (αn(x) - θx)2 dΩn(x)donde αn es un estimador no paramétrico del tipo núcleo o histograma para α(x) = E(Y/X = x) y Ωn una función de ponderación.En este trabajo se extiende tal estudio cuando inicialmente...