Necessary and Sufficient Conditions for Consistency of Generalized M-Estimates.
In the regression model with errors in variables, we observe n i.i.d. copies of (Y, Z) satisfying Y=fθ0(X)+ξ and Z=X+ɛ involving independent and unobserved random variables X, ξ, ɛ plus a regression function fθ0, known up to a finite dimensional θ0. The common densities of the Xi’s and of the ξi’s are unknown, whereas the distribution of ɛ is completely known. We aim at estimating the parameter θ0 by using the observations (Y1, Z1), …, (Yn, Zn). We propose an estimation procedure based on the least...
The quotient of two linear combinations of independent chi-squares will have a generalized F distribution. Exact expressions for these distributions when the chi-square are central and those in the numerator or in the denominator have even degrees of freedom were given in Fonseca et al. (2002). These expressions are now extended for non-central chi-squares. The case of random non-centrality parameters is also considered.
The problem is to determine nonsensitiveness regions for threshold ellipsoids within a regular mixed linear model.
The purpose of this paper is to present a modern approach to the analysis of variance (ANOVA) of disconnected resolvable group divisible partially balanced incomplete block (GDPBIB) designs with factorial structure and with some interaction effects completely confounded. A characterization of a factorial experiment with completely confounded interaction is given. The treatment effect estimators and some relations between the matrix F of the reduced normal equations and the information matrix A are...
The paper deals with the estimation of the unknown vector parameter of the mean and the parameters of the variance in the general -stage linear model. Necessary and sufficient conditions for the existence of the uniformly minimum variance unbiased estimator (UMVUE) of the mean-parameter under the condition of normality are given. The commonly used least squares estimators are used to derive the expressions of UMVUE-s in a simple form.