A class of stopping rules for fixed precision sequential estimates
We propose a class of unbiased and strongly consistent nonparametric kernel estimates of a probability density function, based on a random choice of the sample size and the kernel function. The expected sample size can be arbitrarily small and mild conditions on the local behavior of the density function are imposed.
The problem of estimating the probability is considered when represents a multivariate stochastic input of a monotonic function . First, a heuristic method to bound , originally proposed by de Rocquigny (2009), is formally described, involving a specialized design of numerical experiments. Then a statistical estimation of is considered based on a sequential stochastic exploration of the input space. A maximum likelihood estimator of build from successive dependent Bernoulli data is defined...