Incomplete time series prediction using max-margin classification of data with absent features.
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued...
The dynamic linear model with a non-linear non-Gaussian observation relation is considered in this paper. Masreliez's theorem (see Masreliez's (1975)) of approximate non-Gaussian filtering with linear state and observation relations is extended to the case of a non-linear observation relation that can be approximated by a second-order Taylor expansion.
We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last k terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as k tends to +∞. The second predictor is the finite linear least-squares predictor i.e. the projection of the forecast value on the last k observations. It is shown that these two predictors...
Financial returns are often modelled as autoregressive time series with random disturbances having conditional heteroscedastic variances, especially with GARCH type processes. GARCH processes have been intensely studied in financial and econometric literature as risk models of many financial time series. Analyzing two data sets of stock prices we try to fit AR(1) processes with GARCH or EGARCH errors to the log returns. Moreover, hyperbolic or generalized error distributions occur to be good models...
To filter perturbed local measurements on a random medium, a dynamic model jointly with an observation transfer equation are needed. Some media given by PDE could have a local probabilistic representation by a Lagrangian stochastic process with mean-field interactions. In this case, we define the acquisition process of locally homogeneous medium along a random path by a Lagrangian Markov process conditioned to be in a domain following the path and conditioned to the observations. The nonlinear...