Page 1

Displaying 1 – 3 of 3

Showing per page

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Poisson sampling for spectral estimation in periodically correlated processes

Vincent Monsan (1994)

Applicationes Mathematicae

We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.

Problemas de control estocástico con información incompleta que admiten un proceso suficiente.

Javier Yáñez Gestoso (1986)

Trabajos de Investigación Operativa

Se centra el estudio en los problemas de control estocástico con información incompleta de parámetro discreto.Se define para estos problemas un parámetro suficiente para el proceso básico y se demuestra que la clase de controles basados en éste es esencialmente completa.Como caso particular se estudia el modelo lineal normal y se ve la relación que existe entre el proceso suficiente definido para este modelo y el filtro de Kalman.

Currently displaying 1 – 3 of 3

Page 1