Previous Page 2

Displaying 21 – 33 of 33

Showing per page

An iterative algorithm for testing solvability of max-min interval systems

Helena Myšková (2012)

Kybernetika

This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = min { a , b } . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ A ̲ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...

Analytic enclosure of the fundamental matrix solution

Roberto Castelli, Jean-Philippe Lessard, Jason D. Mireles James (2015)

Applications of Mathematics

This work describes a method to rigorously compute the real Floquet normal form decomposition of the fundamental matrix solution of a system of linear ODEs having periodic coefficients. The Floquet normal form is validated in the space of analytic functions. The technique combines analytical estimates and rigorous numerical computations and no rigorous integration is needed. An application to the theory of dynamical system is presented, together with a comparison with the results obtained by computing...

Currently displaying 21 – 33 of 33

Previous Page 2