Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Object oriented design philosophy for scientific computing

Philippe R. B. Devloo, Gustavo C. Longhin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

Object oriented design philosophy for scientific computing

Philippe R.B. Devloo, Gustavo C. Longhin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

On an algorithm for testing T4 solvability of max-plus interval systems

Helena Myšková (2012)

Kybernetika

In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = a + b . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ b ¯ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm...

On exact solutions of a class of interval boundary value problems

Nizami A. Gasilov (2022)

Kybernetika

In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the...

On the Arithmetic of Errors

Markov, Svetoslav, Hayes, Nathan (2010)

Serdica Journal of Computing

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of...

On the gap between the semilocal convergence domains of two Newton methods

Ioannis K. Argyros (2007)

Applicationes Mathematicae

We answer a question posed by Cianciaruso and De Pascale: What is the exact size of the gap between the semilocal convergence domains of the Newton and the modified Newton method? In particular, is it possible to close it? Our answer is yes in some cases. Using some ideas of ours and more precise error estimates we provide a semilocal convergence analysis for both methods with the following advantages over earlier approaches: weaker hypotheses; finer error bounds on the distances involved, and at...

Currently displaying 1 – 20 of 27

Page 1 Next