Checking positive definiteness or stability of symmetric interval matrices is NP-hard
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
We study the problem of computing the maximal and minimal possible eigenvalues of a symmetric matrix when the matrix entries vary within compact intervals. In particular, we focus on computational complexity of determining these extremal eigenvalues with some approximation error. Besides the classical absolute and relative approximation errors, which turn out not to be suitable for this problem, we adapt a less known one related to the relative error, and also propose a novel approximation error....
Computing powers of interval matrices is a computationally hard problem. Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval components in one row and one column. Motivated by this result, we consider special types of interval matrices where the interval components occupy specific positions. We show that computing the third power of matrices with only one column occupied by interval components can be solved in cubic time; so the asymptotic time complexity is the...
This paper is devoted to the practical computation of the magnetic potential induced by a distribution of magnetization in the theory of micromagnetics. The problem turns out to be a coupling of an interior and an exterior problem. The aim of this work is to describe a complete method that mixes the approaches of Ying [12] and Goldstein [6] which consists in constructing a mesh for the exterior domain composed of homothetic layers. It has the advantage of being well suited for catching the decay...
This paper is devoted to the practical computation of the magnetic potential induced by a distribution of magnetization in the theory of micromagnetics. The problem turns out to be a coupling of an interior and an exterior problem. The aim of this work is to describe a complete method that mixes the approaches of Ying [12] and Goldstein [6] which consists in constructing a mesh for the exterior domain composed of homothetic layers. It has the advantage of being well suited for catching the...
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006The computation of the exact solution set of an interval linear system is a nontrivial task [2, 13]. Even in two and three dimensions a lot of work has to be done. We demonstrate two different realizations. The first approach (see [16]) is based on Java, Java3D, and the BigRational package [21]. An applet allows modifications of the matrix coefficients and/or the coefficients...
We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori...
A general framework for computing robust controllable sets of constrained nonlinear uncertain discrete-time systems as well as controlling such complex systems based on the computed robust controllable sets is introduced in this paper. The addressed one-step control approach turns out to be a robust model predictive control scheme with feasible unit control horizon and contractive constraint. The solver of 1-dimensional quantified set inversion in modal interval analysis is extended to 2-dimensional...
We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions...
We explicit the link between the computer arithmetic problem of providing correctly rounded algebraic functions and some diophantine approximation issues. This allows to get bounds on the accuracy with which intermediate calculations must be performed to correctly round these functions.