On the convergence of Newton's method for analytic operators.
We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's method.
We provide sufficient convergence conditions for the Secant method of approximating a locally unique solution of an operator equation in a Banach space. The main hypothesis is the gamma condition first introduced in [10] for the study of Newton’s method. Our sufficient convergence condition reduces to the one obtained in [10] for Newton’s method. A numerical example is also provided.
We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided.
We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.
Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.
Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate...
We present new semilocal convergence conditions for a two-step Newton-like projection method of Lavrentiev regularization for solving ill-posed equations in a Hilbert space setting. The new convergence conditions are weaker than in earlier studies. Examples are presented to show that older convergence conditions are not satisfied but the new conditions are satisfied.
We provide local and semilocal convergence results for Newton's method when used to solve generalized equations. Using Lipschitz as well as center-Lipschitz conditions on the operators involved instead of just Lipschitz conditions we show that our Newton-Kantorovich hypotheses are weaker than earlier sufficient conditions for the convergence of Newton's method. In the semilocal case we provide finer error bounds and a better information on the location of the solution. In the local case we can provide...
In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.
We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....
Ostrowski-Kantorovich theorem of Halley method for solving nonlinear operator equations in Banach spaces is presented. The complete expression of an upper bound for the method is given based on the initial information. Also some properties of -order of convergence and sufficient asymptotic error bound will be discussed.