Approximation solvability of Hammerstein equation.
We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions...
We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.
Weak solutions of given problems are sometimes not necessarily unique. Relevant solutions are then picked out of the set of weak solutions by so-called entropy conditions. Connections between the original and the numerical entropy condition were often discussed in the particular case of scalar conservation laws, and also a general theory was presented in the literature for general scalar problems. The entropy conditions were realized by certain inequalities not generalizable to systems of equations...