Page 1

Displaying 1 – 3 of 3

Showing per page

An axisymmetric PIC code based on isogeometric analysis⋆

A. Back, A. Crestetto, A. Ratnani, E. Sonnendrücker (2011)

ESAIM: Proceedings

Isogeometric analysis has been developed recently to use basis functions resulting from the CAO description of the computational domain for the finite element spaces. The goal of this study is to develop an axisymmetric Finite Element PIC code in which specific spline Finite Elements are used to solve the Maxwell equations and the same spline functions serve as shape function for the particles. The computational domain itself is defined using splines...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Unique solvability and stability analysis of a generalized particle method for a Poisson equation in discrete Sobolev norms

Yusuke Imoto (2019)

Applications of Mathematics

Unique solvability and stability analysis is conducted for a generalized particle method for a Poisson equation with a source term given in divergence form. The generalized particle method is a numerical method for partial differential equations categorized into meshfree particle methods and generally indicates conventional particle methods such as smoothed particle hydrodynamics and moving particle semi-implicit methods. Unique solvability is derived for the generalized particle method for the...

Currently displaying 1 – 3 of 3

Page 1