Page 1

Displaying 1 – 2 of 2

Showing per page

Minimax and bayes estimation in deconvolution problem*

Mikhail Ermakov (2008)

ESAIM: Probability and Statistics

We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary Gaussian process multiplied by a weight function function εh where h ∈ L2(R1) and ε is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii,...

Currently displaying 1 – 2 of 2

Page 1