Page 1

Displaying 1 – 11 of 11

Showing per page

s∗-compressibility of the discrete Hartree-Fock equation

Heinz-Jürgen Flad, Reinhold Schneider (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Hartree-Fock equation is widely accepted as the basic model of electronic structure calculation which serves as a canonical starting point for more sophisticated many-particle models. We have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be shown...

s∗-compressibility of the discrete Hartree-Fock equation

Heinz-Jürgen Flad, Reinhold Schneider (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The Hartree-Fock equation is widely accepted as the basic model of electronic structure calculation which serves as a canonical starting point for more sophisticated many-particle models. We have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be shown...

Sparse data structure design for wavelet-based methods

Guillaume Latu (2011)

ESAIM: Proceedings

This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform...

Sparse finite element methods for operator equations with stochastic data

Tobias von Petersdorff, Christoph Schwab (2006)

Applications of Mathematics

Let A V V ' be a strongly elliptic operator on a d -dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation A u = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments 1 u V , 2 u V V , ... , k u V V of the solution. We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment k u for k 1 . The key tool...

Currently displaying 1 – 11 of 11

Page 1