Displaying 101 – 120 of 186

Showing per page

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace's equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets

Mahmood Jokar, Mehrdad Lakestani (2012)

Kybernetika

A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate...

On discrete Fourier analysis of amplitude and phase modulated signals

Waldemar Popiński (2012)

Applicationes Mathematicae

In this work the problem of characterization of the Discrete Fourier Transform (DFT) spectrum of an original complex-valued signal o t , t=0,1,...,n-1, modulated by random fluctuations of its amplitude and/or phase is investigated. It is assumed that the amplitude and/or phase of the signal at discrete times of observation are distorted by realizations of uncorrelated random variables or randomly permuted sequences of complex numbers. We derive the expected values and bounds on the variances of such...

On generalized methods of the transfer of conditions

Ľubor Malina (1979)

Aplikace matematiky

The methods of the transfer of conditions are generalized so that they also cover the direct methods leading to the diagonalization of the original matrix of a system with a band matrix. Part 3 is devoted to the numerical stability of methods of the transfer of conditions described in author's previous paper. Finally, it is shown how to obtain a particular method by the choice parameters of the general algorithm.

On highly oscillatory problems arising in electronic engineering

Marissa Condon, Alfredo Deaño, Arieh Iserles (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider linear ordinary differential equations originating in electronic engineering, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is completely different from the familiar framework of asymptotic analysis of highly oscillatory integrals. Using a Bessel-function identity, we expand the oscillator into asymptotic series, and this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping method that guarantees ...

On the computation of scaling coefficients of Daubechies' wavelets

Dana Černá, Václav Finěk (2004)

Open Mathematics

In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.

On the computation of the GCD of 2-D polynomials

Panagiotis Tzekis, Nicholas Karampetakis, Haralambos Terzidis (2007)

International Journal of Applied Mathematics and Computer Science

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.

Currently displaying 101 – 120 of 186