Page 1

Displaying 1 – 10 of 10

Showing per page

Solving Differential Equations by Parallel Laplace Method with Assured Accuracy

Malaschonok, Natasha (2007)

Serdica Journal of Computing

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006We produce a parallel algorithm realizing the Laplace transform method for the symbolic solving of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions and right-hand parts reduced to sums of exponents with polynomial coefficients.

Some new technics regarding the parallelisation of ZéBuLoN, an object oriented finite element code for structural mechanics

Frédéric Feyel (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.

Some new technics regarding the parallelisation of ZéBuLoN, an object oriented finite element code for structural mechanics

Frédéric Feyel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.

Symmetric parareal algorithms for hamiltonian systems

Xiaoying Dai, Claude Le Bris, Frédéric Legoll, Yvon Maday (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The parareal in time algorithm allows for efficient parallel numerical simulations of time-dependent problems. It is based on a decomposition of the time interval into subintervals, and on a predictor-corrector strategy, where the propagations over each subinterval for the corrector stage are concurrently performed on the different processors that are available. In this article, we are concerned with the long time integration of Hamiltonian systems. Geometric, structure-preserving integrators are...

Currently displaying 1 – 10 of 10

Page 1