Page 1

Displaying 1 – 12 of 12

Showing per page

Object oriented design philosophy for scientific computing

Philippe R. B. Devloo, Gustavo C. Longhin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

Object oriented design philosophy for scientific computing

Philippe R.B. Devloo, Gustavo C. Longhin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

On a Parallel Implementation of the Mortar Element Method

Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, Christophe Prud'homme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss a parallel implementation of the domain decomposition method based on the macro-hybrid formulation of a second order elliptic equation and on an approximation by the mortar element method. The discretization leads to an algebraic saddle- point problem. An iterative method with a block- diagonal preconditioner is used for solving the saddle- point problem. A parallel implementation of the method is emphasized. Finally the results of numerical experiments are presented.

On multipoint constraints in FETI methods

Pavla Hrušková, Zdeněk Dostál, Oldřich Vlach, Petr Vodstrčil (2025)

Applications of Mathematics

FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables...

Currently displaying 1 – 12 of 12

Page 1