Previous Page 5

Displaying 81 – 97 of 97

Showing per page

Robust preconditioners for the matrix free truncated Newton method

Lukšan, Ladislav, Matonoha, Ctirad, Vlček, Jan (2010)

Programs and Algorithms of Numerical Mathematics

New positive definite preconditioners for the matrix free truncated Newton method are given. Corresponding algorithms are described in detail. Results of numerical experiments that confirm the efficiency and robustness of the preconditioned truncated Newton method are reported.

Solving systems of two–sided (max, min)–linear equations

Martin Gavalec, Karel Zimmermann (2010)

Kybernetika

A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.

Some tracks in air pollution modelling and simulation.

Bruno Sportisse, Jaouad Boutahar, Edouard Debry, Denis Quélo, Karine Sartelet (2002)

RACSAM

In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.

The use of graphics card and nVidia CUDA architecture in the optimization of the heat radiation intensity

Mlýnek, Jaroslav, Srb, Radek, Knobloch, Roman (2015)

Programs and Algorithms of Numerical Mathematics

The paper focuses on the acceleration of the computer optimization of heat radiation intensity on the mould surface. The mould is warmed up by infrared heaters positioned above the mould surface, and in this way artificial leathers in the automotive industry are produced (e.g. for car dashboards). The presented heating model allows us to specify the position of infrared heaters over the mould to obtain approximately even heat radiation intensity on the whole mould surface. In this way we can obtain...

Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces

Nils Reich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For a class of anisotropic integrodifferential operators arising as semigroup generators of Markov processes, we present a sparse tensor product wavelet compression scheme for the Galerkin finite element discretization of the corresponding integrodifferential equations u = f on [0,1]n with possibly large n. Under certain conditions on , the scheme is of essentially optimal and dimension independent complexity 𝒪 (h-1| log h |2(n-1)) without corrupting the convergence or smoothness requirements...

Currently displaying 81 – 97 of 97

Previous Page 5