Numerical studies of the asymptotic height distribution in binary search trees.
In Hoare's (1961) original version of the algorithm the partitioning element in the central divide-and-conquer step is chosen uniformly at random from the set S in question. Here we consider a variant where this element is the median of a sample of size 2k+1 from S. We investigate convergence in distribution of the number of comparisons required and obtain a simple explicit result for the limiting average performance of the median-of-three version.
Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural assumptions...
Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural...