Cycle and Path Embedding on 5-ary N-cubes
We study two topological properties of the 5-ary n-cube . Given two arbitrary distinct nodes x and y in , we prove that there exists an x-y path of every length ranging from 2n to 5n - 1, where n ≥ 2. Based on this result, we prove that is 5-edge-pancyclic by showing that every edge in lies on a cycle of every length ranging from 5 to 5n.