Loading [MathJax]/extensions/MathZoom.js
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model(n), a generalization of the sand pile model(n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the
ice pile model(n),
a generalization of the
sand pile model(n).
More precisely, for any fixed integer k, we show that
the negative lexicographic ordering naturally identifies a tree structure on the lattice
(n):
this lets us design an algorithm which generates all the ice piles of
(n)
in amortized time
O(1)
and in space
O().
A -labeled -poset is an (at most) countable set, labeled in the set , equipped with partial orders. The collection of all -labeled -posets is naturally equipped with binary product operations and -ary product operations. Moreover, the -ary product operations give rise to
A Σ-labeled n-poset is an (at most) countable set,
labeled in the set Σ, equipped with n partial orders.
The collection of all Σ-labeled n-posets is naturally
equipped with n binary product operations and
nω-ary product operations.
Moreover, the ω-ary product operations
give rise to nω-power operations.
We show that those Σ-labeled n-posets that can be generated from
the singletons by the binary and ω-ary
product operations form the free algebra on Σ
in a variety axiomatizable by an infinite collection...
Given rectangles in a plane whose all sides belong to two perpendicular directions, an algorithm for the construction of the boundary of the union of those rectangles is shown in teh paper.
We investigate the density and distribution behaviors of the chinese remainder representation pseudorank. We give a very strong approximation to density, and derive two efficient algorithms to carry out an exact count (census) of the bad pseudorank integers. One of these algorithms has been implemented, giving results in excellent agreement with our density analysis out to -bit integers.
We investigate the density and distribution behaviors of the chinese remainder representation
pseudorank. We give a very strong approximation to density, and derive two efficient
algorithms to carry out an exact count (census) of the bad pseudorank integers. One of
these algorithms has been implemented, giving results in excellent agreement with
our density analysis out to 5189-bit integers.
In this paper results concerning structural and approximability properties of the subclass of NP-Complete Optimization Problems, defined over a lattice are considered. First, various approaches to the concept of Fully Polynomial Approximation Scheme are presented with application to several known problems in the class of NP-Complete Optimization Problems.Secondly, a characterization of full Approximability for the class of Max Subset Problems is introduced.
Currently displaying 1 –
20 of
32