Simple use of pattern recognition in experiment analysis
This paper is a collection of numerous methods and results concerning a design of kernel functions. It gives a short overview of methods of building kernels in metric spaces, especially and . However we also present a new theory. Introducing kernels was motivated by searching for non-linear patterns by using linear functions in a feature space created using a non-linear feature map.
The goal of this paper is to present all algorithm for pattern recognition, leveraging on an existing fuzzy clustering algorithm developed by Del Amo et al. [3, 5], and modifying it to its supervised version, in order to apply the algorithm to different pattern recognition applications in Remote Sensing. The main goal is to recognize the object and stop the search depending on the precision of the application. The referred algorithm was the core of a classification system based on Fuzzy Sets Theory...
The paper presents a recursive algorithm for the investigation of a strict,linear separation in the Euclidean space. In the case when sets are linearly separable, it allows us to determine the coefficients of the hyperplanes. An example of using this algorithm as well as its drawbacks are shown. Then the algorithm of determining an optimal separation (in the sense of maximizing the distance between the two sets) is presented.
Finite mixture modelling of class-conditional distributions is a standard method in a statistical pattern recognition. This paper, using bag-of-words vector document representation, explores the use of the mixture of multinomial distributions as a model for class-conditional distribution for multiclass text document classification task. Experimental comparison of the proposed model and the standard Bernoulli and multinomial models as well as the model based on mixture of multivariate Bernoulli distributions...
We present an overview of four approaches of the finite automata use in stringology: deterministic finite automaton, deterministic simulation of nondeterministic finite automaton, finite automaton as a model of computation, and compositions of finite automata solutions. We also show how the finite automata can process strings build over more complex alphabet than just single symbols (degenerate symbols, strings, variables).
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results.