Page 1

Displaying 1 – 4 of 4

Showing per page

Belief functions induced by multimodal probability density functions, an application to the search and rescue problem

P.-E. Doré, A. Martin, I. Abi-Zeid, A.-L. Jousselme, P. Maupin (2010)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we propose a new method to generate a continuous belief functions from a multimodal probability distribution function defined over a continuous domain. We generalize Smets' approach in the sense that focal elements of the resulting continuous belief function can be disjoint sets of the extended real space of dimension n. We then derive the continuous belief function from multimodal probability density functions using the least commitment principle. We illustrate the approach on two...

Belief functions induced by multimodal probability density functions, an application to the search and rescue problem

P.-E. Doré, A. Martin, I. Abi-Zeid, A.-L. Jousselme, P. Maupin (2011)

RAIRO - Operations Research

In this paper, we propose a new method to generate a continuous belief functions from a multimodal probability distribution function defined over a continuous domain. We generalize Smets' approach in the sense that focal elements of the resulting continuous belief function can be disjoint sets of the extended real space of dimension n. We then derive the continuous belief function from multimodal probability density functions using the least commitment principle. We illustrate the approach on two...

Binary Relations-based Rough Sets – an Automated Approach

Adam Grabowski (2016)

Formalized Mathematics

Rough sets, developed by Zdzisław Pawlak [12], are an important tool to describe the state of incomplete or partially unknown information. In this article, which is essentially the continuation of [8], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library [11]). Here we drop the classical equivalence- and tolerance-based models of rough...

Building adaptive tests using Bayesian networks

Jiří Vomlel (2004)

Kybernetika

We propose a framework for building decision strategies using Bayesian network models and discuss its application to adaptive testing. Dynamic programming and A O algorithm are used to find optimal adaptive tests. The proposed A O algorithm is based on a new admissible heuristic function.

Currently displaying 1 – 4 of 4

Page 1