Some remarks on multihead automata
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect...
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with...
The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end of this work. ...
This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra of the symmetric group over a field of characteristic 0 (or ). The goal is to obtain a constructive version of the isomorphism where is a partition of and counts the standard tableaux of shape ....
In this paper, we consider polynomial systems of the form x' = y + P(x, y), y' = -x + Q(x, y), where P and Q are polynomials of degree n wihout linear part.For the case n = 3, we have found new sufficient conditions for a center at the origin, by proposing a first integral linear in certain coefficient of the system. The resulting first integral is in the general case of Darboux type.By induction, we have been able to generalize these results for polynomial systems of arbitrary degree.
In this paper, we propose a method which enables to construct almost optimal broadcast schemes on an -dimensional hypercube in the circuit switched, -port model. In this model, an initiator must inform all the nodes of the network in a sequence of rounds. During a round, vertices communicate along arc-disjoint dipaths. Our construction is based on particular sequences of nested binary codes having the property that each code can inform the next one in a single round. This last property is insured...