Displaying 21 – 40 of 43

Showing per page

Linearized plasticity is the evolutionary Γ -limit of finite plasticity

Alexander Mielke, Ulisse Stefanelli (2013)

Journal of the European Mathematical Society

We provide a rigorous justification of the classical linearization approach in plasticity. By taking the small-deformations limit, we prove via Γ -convergence for rate-independent processes that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique strong solution of linearized elastoplasticity.

Numerical approaches to rate-independent processes and applications in inelasticity

Alexander Mielke, Tomáš Roubíček (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

A conceptual numerical strategy for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The novelty is that we obtain convergence of subsequences of space-time discretizations even in case where the limit problem does not have a unique solution and we need no additional assumptions on higher regularity of the limit solution. The variety of general perspectives thus obtained is illustrated on several...

On periodic homogenization in perfect elasto-plasticity

Gilles A. Francfort, Alessandro Giacomini (2014)

Journal of the European Mathematical Society

The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.

On quasistatic inelastic models of gradient type with convex composite constitutive equations

Krzysztof Chełmiński (2003)

Open Mathematics

This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.

Regularity of displacement solutions in Hencky plasticity. II: The main result

Jarosław L. Bojarski (2011)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity. In the second part, we prove that the displacement...

Regularity of displacement solutions in Hencky plasticity. I: The extremal relation

Jarosław L. Bojarski (2011)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements. ...

Regularity of solutions in plasticity. I: Continuum

Jarosław L. Bojarski (2003)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space L D ( Ω ) u L ¹ ( Ω , ) | u + ( u ) T L ¹ ( Ω , n × n ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Regularity of solutions in plasticity. II: Plates

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space W 2 , 1 ( Ω ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Reliable computation and local mesh adaptivity in limit analysis

Sysala, Stanislav, Haslinger, Jaroslav, Repin, Sergey (2019)

Programs and Algorithms of Numerical Mathematics

The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local...

Reliable solution of an elasto-plastic Reissner-Mindlin beam for Hencky's model with uncertain yield function

Ivan Hlaváček (1998)

Applications of Mathematics

We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.

Shape optimization of elasto-plastic bodies

Zuzana Dimitrovová (2001)

Applications of Mathematics

Existence of an optimal shape of a deformable body made from a physically nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so called deformation theory of plasticity is invoked in this case) is proved. Approximation of the problem by finite elements is also discussed.

Sweeping preconditioners for elastic wave propagation with spectral element methods

Paul Tsuji, Jack Poulson, Björn Engquist, Lexing Ying (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented....

Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity

Pavel Krejčí, Jürgen Sprekels (1998)

Applications of Mathematics

In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ contains, in addition to elastic, viscous and thermic contributions, a plastic component σ p of the form σ p ( x , t ) = 𝒫 [ ε , θ ( x , t ) ] ( x , t ) . Here ε and θ are the fields of strain and absolute temperature, respectively, and { 𝒫 [ · , θ ] } θ > 0 denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion*

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful...

Currently displaying 21 – 40 of 43