Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí, Ulisse Stefanelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

Currently displaying 41 – 43 of 43

Previous Page 3