Loading [MathJax]/extensions/MathZoom.js
The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree...
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity.
In the second part, we prove that the displacement...
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements.
...
The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.
The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local...
We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.
Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.
Currently displaying 1 –
13 of
13