On a boundary value problem in nonlinear theory of thin elastic plates
We deal with the system describing moderately large deflections of thin viscoelastic plates with an inner obstacle. In the case of a long memory the system consists of an integro-differential 4th order variational inequality for the deflection and an equation with a biharmonic left-hand side and an integro-differential right-hand side for the Airy stress function. The existence of a solution in a special case of the Dirichlet-Prony series is verified by transforming the problem into a sequence of...
Bases of asymptotic theory of beams, plates and shells are stated. The comparison with classic theory is conducted. New classes of thin bodies problems, for which hypotheses of classic theory are not applicable, are considered. By the asymptotic method effective solutions of these problems are obtained. The effectiveness of the asymptotic method for finding solutions of as static, as well as dynamic problems of beams, plates and shells is shown.
The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...
The problem of a thin elastic plate, deflection of which is limited below by a rigid obstacle is solved. Using Ahlin's and Ari-Adini's elements on rectangles, the convergence is established and SOR method with constraints is proposed for numerical solution.
The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome...
For a plate subject to stress boundary condition, the deformation determined by the Reissner–Mindlin plate bending model could be bending dominated, transverse shear dominated, or neither (intermediate), depending on the load. We show that the Reissner–Mindlin model has a wider range of applicability than the Kirchhoff–Love model, but it does not always converge to the elasticity theory. In the case of bending domination, both the two models are accurate. In the case of transverse shear domination, the...
In questo lavoro viene studiato il comportamento dinamico di una piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presentano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo delle equazioni del moto. Si istituiscono infine dei confronti con risultati...