Page 1

Displaying 1 – 7 of 7

Showing per page

On the existence of a weak solution of the boundary value problem for the equilibrium of a shallow shell reinforced with stiffening ribs

Igor Bock, Ján Lovíšek (1978)

Aplikace matematiky

The existence and the unicity of a weak solution of the boundary value problem for a shallow shell reinforced with stiffening ribs is proved by the direct variational method. The boundary value problem is solved in the space W ( Ω ) H 0 1 ( Ω ) × H 0 1 ( Ω ) × H 0 2 ( Ω ) , on which the corresponding bilinear form is coercive. A finite element method for numerical solution is introduced. The approximate solutions converge to a weak solution in the space Q ( Ω ) .

On the membrane approximation for thin elastic shells in the hyperbolic case.

E. Sánchez-Palencia (1993)

Revista Matemática de la Universidad Complutense de Madrid

We consider the variational formulation of the problem of elastic shells in the membrane approximation, when the medium surface is hyperbolic. It appears that the corresponding bilinear form behaves as some kind of two-dimensional elasticity without shear rigidity. This amounts to saying that the membrane behaves rather as a net made of elastic strings disposed along the asymptotic curves of the surface than as an elastic two-dimensional medium. The mathematical and physical reasons of this behavior...

Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells

Irena Lasiecka, Rich Marchand (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result presented in the paper improves upon the existing literature where the rates of convergence were derived for small initial data only [19].

Currently displaying 1 – 7 of 7

Page 1