Previous Page 5

Displaying 81 – 84 of 84

Showing per page

Vector variational problems and applications to optimal design

Pablo Pedregal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem whose numerical...

Γ-convergence approach to variational problems in perforated domains with Fourier boundary conditions

Valeria Chiadò Piat, Andrey Piatnitski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound,...

Currently displaying 81 – 84 of 84

Previous Page 5