Loading [MathJax]/extensions/MathZoom.js
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators.
Part I: Let be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let be the corresponding linearly independent (normalized) eigenfunctions...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...
In this survey paper,
we are concerned with the zero Mach number limit
for compressible viscous flows.
For the sake of (mathematical) simplicity,
we restrict ourselves to the case of barotropic
fluids and we
assume that the flow evolves in the whole space
or satisfies periodic boundary conditions. We focus on the case of ill-prepared data.
Hence highly oscillating acoustic waves
are likely to propagate through the fluid.
We nevertheless state
the convergence to the incompressible Navier-Stokes...
Currently displaying 1 –
3 of
3