Page 1 Next

Displaying 1 – 20 of 3483

Showing per page

1D dynamics of a second-grade viscous fluid in a constricted tube

Fernando Carapau, Adélia Sequeira (2008)

Banach Center Publications

Using a one-dimensional hierarchical model based on the Cosserat theory approach to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations depending on time and on a single spatial variable. From this new system we obtain the steady relationship between average pressure gradient and volume flow rate over a finite section of a straight constricted tube, and the corresponding...

2D simulation of flow behind a heated cylinder using spectral element approach with variable coefficients

Pech, Jan (2015)

Programs and Algorithms of Numerical Mathematics

The scheme for the numerical solution of the incompressible Navier-Stokes equations coupled with the equation for temperature through the temperature dependent viscosity and thermal conductivity coefficients is presented. It is applied, together with the spectral element method, to the 2D calculations of flow around heated cylinder. High order polynomial approximation is combined with the decomposition of whole computational domain to only a few elements. Resulting data are compared with the experimental...

3D monolithic finite element approach for aero-thermics processes in industrial furnaces⋆

E. Hachem, E. Massoni, T. Coupez (2011)

ESAIM: Proceedings

We consider in this paper a mathematical and numerical model to design an industrial software solution able to handle real complex furnaces configurations in terms of geometries, atmospheres, parts positioning, heat generators and physical thermal phenomena. A three dimensional algorithm based on stabilized finite element methods (SFEM) for solving the momentum, energy, turbulence and radiation equations is presented. An immersed volume method (IVM) for thermal coupling of fluids and solids is introduced...

3-dimensional physically consistent diffusion in anisotropic media with memory

Michele Caputo (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some data on the flow of fluids exhibit properties which may not be interpreted with the classic theory of propagation of pressure and of fluids [21] based on the classic D’Arcy’s law which states that the flux is proportional to the pressure gradient. In order to obtain a better representation of the flow and of the pressure of fluids the law of D’Arcy is here modified introducing a memory formalisms operating on the flow as well as on the pressure gradient which implies a filtering of the pressure...

A 2D model for hydrodynamics and biology coupling applied to algae growth simulations

Olivier Bernard, Anne-Céline Boulanger, Marie-Odile Bristeau, Jacques Sainte-Marie (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Cultivating oleaginous microalgae in specific culturing devices such as raceways is seen as a future way to produce biofuel. The complexity of this process coupling non linear biological activity to hydrodynamics makes the optimization problem very delicate. The large amount of parameters to be taken into account paves the way for a useful mathematical modeling. Due to the heterogeneity of raceways along the depth dimension regarding temperature, light intensity or nutrients availability, we adopt...

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

A boundary multivalued integral “equation” approach to the semipermeability problem

Jaroslav Haslinger, Charalambos C. Baniotopoulos, Panagiotis D. Panagiotopoulos (1993)

Applications of Mathematics

The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...

A brief introduction to homogenization and miscellaneous applications*

Grégoire Allaire (2012)

ESAIM: Proceedings

This paper is a set of lecture notes for a short introductory course on homogenization. It covers the basic tools of periodic homogenization (two-scale asymptotic expansions, the oscillating test function method and two-scale convergence) and briefly describes the main results of the more general theory of G−  or H−convergence. Several applications of the method are given: derivation of Darcy’s law for flows in porous media, derivation of the porosity...

A central scheme for shallow water flows along channels with irregular geometry

Jorge Balbás, Smadar Karni (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a new semi-discrete central scheme for one-dimensional shallow water flows along channels with non-uniform rectangular cross sections and bottom topography. The scheme preserves the positivity of the water height, and it is preserves steady-states of rest (i.e., it is well-balanced). Along with a detailed description of the scheme, numerous numerical examples are presented for unsteady and steady flows. Comparison with exact solutions illustrate the accuracy and robustness of the numerical...

A central scheme for shallow water flows along channels with irregular geometry

Jorge Balbás, Smadar Karni (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a new semi-discrete central scheme for one-dimensional shallow water flows along channels with non-uniform rectangular cross sections and bottom topography. The scheme preserves the positivity of the water height, and it is preserves steady-states of rest (i.e., it is well-balanced). Along with a detailed description of the scheme, numerous numerical examples are presented for unsteady and steady flows. Comparison with exact solutions illustrate the accuracy and robustness of the numerical...

Currently displaying 1 – 20 of 3483

Page 1 Next