Coassociative grammar, periodic orbits, and quantum random walk over .
Contractions of Poisson-Lie groups are introduced by using Lie bialgebra contractions. As an application, contractions of SL(2,R) Poisson-Lie groups leading to (1+1) Poincaré and Heisenberg structures are analysed. It is shown how the method here introduced allows a systematic construction of the Poisson structures associated to non-coboundary Lie bialgebras. Finally, it is sketched how contractions are also implemented after quantization by using the Lie bialgebra approach.
In this paper, we develop the crystal basis theory for the quantum queer superalgebra . We define the notion of crystal bases and prove the tensor product rule for -modules in the category . Our main theorem shows that every -module in the category has a unique crystal basis.