On a Class of non Linear Schrödinger Equations with non Local Interaction.
We develop the -approach to inverse scattering at zero energy in dimensions of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction of the Faddeev generalized scattering amplitude in the...
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
This article reflects in its content the talk the author gave at the XVII Congresso dellUnione Matematica Italiana, held in Milano, 8-13 September 2003. We review about some recent results on the problem of deriving the Gross-Pitaevskii equation in dimension one from the dynamics of a quantum system with a large number of identical bosons. We explain the motivations for some peculiar choices (shape of the interaction potential, scaling, initial datum). Open problems are pointed out and difficulties...