Repulsion of an evolving surface on walls with random heights
In this paper we establish a decoupling feature of the random interlacement process at level , . Roughly speaking, we show that observations of restricted to two disjoint subsets and of are approximately independent, once we add a sprinkling to the process by slightly increasing the parameter . Our results differ from previous ones in that we allow the mutual distance between the sets and to be much smaller than their diameters. We then provide an important application of this...
We consider a broad class of stochastic lattice predator-prey models whose main features are overviewed. In particular, this article aims at drawing a picture of the influence of spatial fluctuations, which are not accounted for by the deterministic rate equations, on the properties of the stochastic models. Here, we outline the robust scenario obeyed by most of the lattice predator-prey models with an interaction à la Lotka-Volterra. We also show how a drastically different behavior can emerge...
In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory between two points on the boundary of a finite subdomain of is proportional to . When is supercritical (i.e. where is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.
For the random walk among random conductances, we prove that the environment viewed by the particle converges to equilibrium polynomially fast in the variance sense, our main hypothesis being that the conductances are bounded away from zero. The basis of our method is the establishment of a Nash inequality, followed either by a comparison with the simple random walk or by a more direct analysis based on a martingale decomposition. As an example of application, we show that under certain conditions,...