A coding of real null four-momenta into world-sheet coordinates.
We define a new operad based on surfaces with foliations which contains suboperads. We construct CW models for these operads and provide applications of these models by giving actions on Hochschild complexes (thus making contact with string topology), by giving explicit cell representatives for the Dyer-Lashof-Cohen operations for the 2-cubes and by constructing new Ω spectra. The underlying novel principle is that we can trade genus in the surface representation vs. the dimension k of the little...
El artículo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones a varios problemas de móduli, teoría de cuerdas y simetría "mirror". Se desarrollan los fundamentos necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorías derivadas y los functores integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-dualidad fibrada en variedades de Calabi-Yau elípticas de dimensión tres. Se consideran también varias...
In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...
We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in . Moreover, it would be unique. Other values of , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar...